Extensions 1→N→G→Q→1 with N=C32 and Q=C24⋊C2

Direct product G=N×Q with N=C32 and Q=C24⋊C2
dρLabelID
C32×C24⋊C2144C3^2xC24:C2432,466

Semidirect products G=N:Q with N=C32 and Q=C24⋊C2
extensionφ:Q→Aut NdρLabelID
C32⋊(C24⋊C2) = F9⋊S3φ: C24⋊C2/C3SD16 ⊆ Aut C322416+C3^2:(C24:C2)432,740
C322(C24⋊C2) = He34SD16φ: C24⋊C2/C4D6 ⊆ Aut C327212-C3^2:2(C24:C2)432,84
C323(C24⋊C2) = He35SD16φ: C24⋊C2/C4D6 ⊆ Aut C327212+C3^2:3(C24:C2)432,85
C324(C24⋊C2) = C338SD16φ: C24⋊C2/C6D4 ⊆ Aut C32248+C3^2:4(C24:C2)432,589
C325(C24⋊C2) = He36SD16φ: C24⋊C2/C8S3 ⊆ Aut C32726C3^2:5(C24:C2)432,117
C326(C24⋊C2) = He37SD16φ: C24⋊C2/C8S3 ⊆ Aut C32726C3^2:6(C24:C2)432,175
C327(C24⋊C2) = C3316SD16φ: C24⋊C2/C12C22 ⊆ Aut C32144C3^2:7(C24:C2)432,443
C328(C24⋊C2) = C3317SD16φ: C24⋊C2/C12C22 ⊆ Aut C3272C3^2:8(C24:C2)432,444
C329(C24⋊C2) = C3318SD16φ: C24⋊C2/C12C22 ⊆ Aut C32484C3^2:9(C24:C2)432,458
C3210(C24⋊C2) = C3×C242S3φ: C24⋊C2/C24C2 ⊆ Aut C32144C3^2:10(C24:C2)432,482
C3211(C24⋊C2) = C3321SD16φ: C24⋊C2/C24C2 ⊆ Aut C32216C3^2:11(C24:C2)432,498
C3212(C24⋊C2) = C3×C325SD16φ: C24⋊C2/Dic6C2 ⊆ Aut C32484C3^2:12(C24:C2)432,422
C3213(C24⋊C2) = C3315SD16φ: C24⋊C2/Dic6C2 ⊆ Aut C3272C3^2:13(C24:C2)432,442
C3214(C24⋊C2) = C3×D12.S3φ: C24⋊C2/D12C2 ⊆ Aut C32484C3^2:14(C24:C2)432,421
C3215(C24⋊C2) = C3314SD16φ: C24⋊C2/D12C2 ⊆ Aut C32144C3^2:15(C24:C2)432,441

Non-split extensions G=N.Q with N=C32 and Q=C24⋊C2
extensionφ:Q→Aut NdρLabelID
C32.(C24⋊C2) = C722C6φ: C24⋊C2/C8S3 ⊆ Aut C32726C3^2.(C24:C2)432,122
C32.2(C24⋊C2) = D36.S3φ: C24⋊C2/C12C22 ⊆ Aut C321444-C3^2.2(C24:C2)432,62
C32.3(C24⋊C2) = C6.D36φ: C24⋊C2/C12C22 ⊆ Aut C32724+C3^2.3(C24:C2)432,63
C32.4(C24⋊C2) = C3×C72⋊C2φ: C24⋊C2/C24C2 ⊆ Aut C321442C3^2.4(C24:C2)432,107
C32.5(C24⋊C2) = C24⋊D9φ: C24⋊C2/C24C2 ⊆ Aut C32216C3^2.5(C24:C2)432,171

׿
×
𝔽